设T为线性空间V的一个线性变换,且T的平方等于T,证明T的特征值只能是1或0
展开全部
设 a 为T的特征值,设x为对于的非零特征向量.则:Tx = ax
T^2 = T ==> T^2 x = Tx
T(T(x))=Tx
T(ax)=ax
aTx=ax
a(ax)=ax
a^2 x - ax =0
(a^2-a) x = 0
因为 x 非零向量,所以必有 a^2 - a = 0,a(a-1) = 0 ==> a = 0 或 1.
T^2 = T ==> T^2 x = Tx
T(T(x))=Tx
T(ax)=ax
aTx=ax
a(ax)=ax
a^2 x - ax =0
(a^2-a) x = 0
因为 x 非零向量,所以必有 a^2 - a = 0,a(a-1) = 0 ==> a = 0 或 1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询