已知函数fx=2sin(wx),w>0 若fx在[-π/4,2π/3]上单调递增,求w的取值范围

 我来答
机器1718
2022-07-04 · TA获得超过6831个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
解析:∵函数f(x)=2sinwx(w>0)在区间[-π/4,2π/3]上单调递增
∵函数f(x)初相为0
∴最小值点在Y轴左,最大值点在Y轴右,二者与Y轴之距相等
函数f(x)最小值点:wx=2kπ-π/2==>x=2kπ/w-π/(2w)
∴-π/(2w)-1/(2w)wx=2kπ/w+π/(2w)
π/(2w)>=2π/3==>1/(2w)>=2/3==>w
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式