A行列式为0,证明伴随矩阵行列式也为0

 我来答
完满且闲雅灬抹香鲸P
2022-07-05 · TA获得超过1.8万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:73万
展开全部
用反证法.
假设 |A*|≠0,则A*可逆.
由 AA* = |A|E = 0
等式两边右乘 A* 的逆矩阵
得 A = 0.
所以 A* = 0
所以 |A*| = 0.这与假设矛盾.
故 当|A|=0时,|A*|=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式