m=n是n维向量组线性相关的条件:实质就是求齐次方程组的非零解。
定理中,A行满秩,<=>A的行向量组线性无关,但它的列向量组却不一定,若r<n,其列向量组一定线性相关(个数大于维数)。如当m=1时,取α1=(1,0)T,β1=(0,1)T均为单个非零向量是线性无关的,但β1不能用α1线性表示,必要性不成立。
定义
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。