时间序列分析

 我来答
科创17
2022-06-22 · TA获得超过5895个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:174万
展开全部

在R中生成时间序列的前提是我们将分析对象转成时间序列函数对象,包括观测值、起始时间、种植时间、及周期(月、季度、年)的结构。这些都能通过ts( )函数实现。

R语言中,对时间序列数据进行分析处理时,使用差分函数要注意:差分函数diff()不带参数名的参数指滞后阶数,也就是与滞后第几阶的数据进行差分。如果要指定差分的阶数,则一定要使用带名称的参数:diff=2。

例如: sample表示样本数据。

1、diff(sample,2)表示是对滞后2阶的数据进行差分,一阶差分,等同于: diff(sample,lag=2)

2、diff(sample,diff=2)才是表示二阶差分

意:在函数中尽量避免使用没有命名的参数。在《时间序列分析及应用-R语言(第2版)》中,P315,描述到: 我们得到的教训就是,除非完全了解相关参数的位置,否则使用未命名参数是非常危险的。

截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF);

拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)。

拖尾 :始终有非零取值,不会在k大于某个常数后就恒等于零(或在0附近随机波动)

截尾 :在大于某个常数k后快速趋于0为k阶截尾

AR模型:自相关系数拖尾,偏自相关系数截尾;

MA模型:自相关系数截尾,偏自相关函数拖尾;

ARMA模型:自相关函数和偏自相关函数均拖尾。

根据输出结果, 自相关函数图拖尾,偏自相关函数图截尾 ,且n从2或3开始控制在置信区间之内,因而可判定为AR(2)模型或者AR(3)模型。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式