
已知函数F(x)=根号3(sin^2X-cos^2X)+2sinXcosX.(1)X属于[0,2π/3]时,求F(x)的值域。
展开全部
F(x)=根号3(sin^2X-cos^2X)+2sinXcosX
=√3cos2x+sin2x
=2sin(2x+π/3)
(1) X属于[0,2π/3] 2x+π/3属于[π/3,5π/3]
2sin(2x+π/3)属于[-2,2]
值域为 [-2,2]
(2)
2kπ-π/2<=2x+π/3<=2kπ+π/2
kπ-5π/12<=x<=kπ+π/12
递增区间[kπ-5π/12,kπ+π/12] k∈Z
=√3cos2x+sin2x
=2sin(2x+π/3)
(1) X属于[0,2π/3] 2x+π/3属于[π/3,5π/3]
2sin(2x+π/3)属于[-2,2]
值域为 [-2,2]
(2)
2kπ-π/2<=2x+π/3<=2kπ+π/2
kπ-5π/12<=x<=kπ+π/12
递增区间[kπ-5π/12,kπ+π/12] k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询