用部分积分法求∫x^2sinx^2dx
1个回答
展开全部
公式:∫udv=uv-∫vdu原式=∫1/2*xd(-cosx^2)=-1/2cosx^2*x+1/2∫cosx^2dx=-1/2cosx^2*x+1/2∫(1-cos2x)dx=-1/2cosx^2*x+1/2∫dx-1/2∫cos2xdx=-1/2*cosx^2*x+1/2*x-1/2*1/2sin(2x)+CC:常数. * 表乘积...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询