行阶梯形矩阵的特点是如果零行在最下方或者非零首元的列标号随行标号的增加而增加,那么就是阶梯形短阵。
而且每行的第一个非零元下面的元素都是零,第一个非零元的列数依次加大,全是零的在最下面。
简单点来说,行阶梯形矩阵其实是说的指线性代数中的矩阵,通过有限步的行初等变换,任何矩阵都能变换成行阶梯形。不过行阶梯形的结果它不是唯一的,通过一定条件的改变,会发生不同的变化。不过一个线性方程组是行附梯形。
简介:
一个矩阵成为阶梯型矩阵,需满足两个条件:
(1)如果它既有零行,又有非零行,则零行在下,非零行在上。
(2)如果它有非零行,则每个非零行的第一个非零元素所在列号自上而下严格单调上升。