arctan√(x^2-1)=arccos(1/x)求解过程
1个回答
展开全部
arctan√(x^2-1)=arccos(1/x)
tan(arctan√(x^2-1))=tan(arccos(1/x))
√(x^2-1)=sin(arccos(1/x))/(1/x)
(1/x)√(x^2-1)=sin(arccos(1/x))
(x^2-1)/x^2=(sin(arccos(1/x)))^2=1-(cos(arccos(1/x)))^2=1-(1/x)^2
x^2-1=x^2-1
上式对任何x都成立
但看原始的式子,
显然,x^2-1>0,x不等于0
即x>1,x1,及0
tan(arctan√(x^2-1))=tan(arccos(1/x))
√(x^2-1)=sin(arccos(1/x))/(1/x)
(1/x)√(x^2-1)=sin(arccos(1/x))
(x^2-1)/x^2=(sin(arccos(1/x)))^2=1-(cos(arccos(1/x)))^2=1-(1/x)^2
x^2-1=x^2-1
上式对任何x都成立
但看原始的式子,
显然,x^2-1>0,x不等于0
即x>1,x1,及0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询