急,求解,高手帮忙!高等数学题目

 我来答
heanmen
2012-07-01 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2609万
展开全部
解:原式=∫<0,π/2>dθ∫<0,csc(θ+π/4)/√2>e^(r²)rdr+∫<π/2,π>dθ∫<0,csc(θ-π/4)/√2>e^(r²)rdr
+∫<π,3π/2>dθ∫<0,-csc(θ+π/4)/√2>e^(r²)rdr+∫<3π/2,2π>dθ∫<0,-csc(θ-π/4)/√2>e^(r²)rdr
(做极坐标变换)
=(1/2)∫<0,π/2>[e^(csc²(θ+π/4)/2)-1]dθ+(1/2)∫<π/2,π>[e^(csc²(θ-π/4)/2)-1]dθ
+(1/2)∫<π,3π/2>[e^(csc²(θ+π/4)/2)-1]dθ+(1/2)∫<3π/2,2π>[e^(csc²(θ-π/4)/2)-1]dθ
=(1/2)∫<0,π/2>e^(csc²(θ+π/4)/2)dθ+(1/2)∫<π/2,π>e^(csc²(θ-π/4)/2)dθ
+(1/2)∫<π,3π/2>e^(csc²(θ+π/4)/2)dθ+(1/2)∫<3π/2,2π>e^(csc²(θ-π/4)/2)dθ-π
=(1/2)∫<0,π/2>e^(csc²(θ+π/4)/2)dθ+(1/2)∫<π/2,π>e^(csc²(θ-π/4)/2)dθ
+(1/2)∫<0,π/2>e^(csc²(θ+π/4)/2)dθ+(1/2)∫<π/2,π>e^(csc²(θ-π/4)/2)dθ-π
(在第三和第四个积分中,以θ+π代换θ)
=∫<0,π/2>e^(csc²(θ+π/4)/2)dθ+∫<π/2,π>e^(csc²(θ-π/4)/2)dθ-π
=∫<0,π/2>e^(csc²(θ+π/4)/2)dθ+∫<0,π/2>e^(csc²(θ+π/4)/2)dθ-π
(在第二个积分中,以θ+π/2代换θ)
=2∫<0,π/2>e^(csc²(θ+π/4)/2)dθ-π。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式