若n阶方阵A的伴随矩阵为A*,证明|A|=0
展开全部
确实缺少条件
A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)= det(A)*E. E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n. 所以 det(A伴随)=det(A)^(n-1).
原题中并没有别的条件,当然推不出det(A)=0了.
A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)= det(A)*E. E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n. 所以 det(A伴随)=det(A)^(n-1).
原题中并没有别的条件,当然推不出det(A)=0了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询