用ε-σ语言证明函数极限lim(x→3)x³=27

 我来答
风利小3718
2021-10-18 · TA获得超过603个赞
知道小有建树答主
回答量:239
采纳率:97%
帮助的人:60.5万
展开全部
函数极限定义:
设函数f(x)在x0处的某一去心邻域内有定义,若存在常数a,对于任意ε>0,总存在正数δ,使得当
|x-xo|<δ时,|f(x)-a|<ε成立,那么称a是函数f(x)在x0处的极限。
如limx^3=27
x趋近3时的极限:
因为x趋近3,我们只考虑x=3近旁的x值即可,不妨令|x-3|<1
2
0,总存在正数δ=min(1,ε/37)取最小值,使得当
|x-3|<δ时,|f(x)-27|<ε成立,
故,27是函数f(x)=x^3在x=3处的极限。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式