因为函数在闭区间上连续要求左端点右连续、右端点左连续;而函数可导则要求函数在一点的左右导数均存在且相等,若为闭区间,则只能验证左端点是否有右导数,右端点是否有左导数,故函数在闭区间的端点处不可导。
中值定理就是函数某点或者函数的某条斜率代替原函数的定理,所以需要闭区间连续开区间可导。
扩展资料
该定理给出了导函数连续的一个充分条件。(注意:必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。)
函数在某一点的极限不一定等于该点处的函数值;但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。