已知cos(θ-π/4)=3/5,θ∈(π/2,π),求cosθ的值?
1个回答
展开全部
因为:θ∈(π/2,π),
所以:θ-π/4∈(π/4,3π/4)
因此:sin(θ-π/4)>0
又:cos(θ-π/4)=3/5
而:sin²(θ-π/4)+cos²(θ-π/4)=1
所以,sin²(θ-π/4)=1-cos²(θ-π/4)=1-(3/5)²=16/25
由此得:sin(θ-π/4)=4/5
cosθ=cos[(θ-π/4)+π/4]
=cos(θ-π/4)cos(π/4)-sin(θ-π/4)sin(π/4)
=(3/5)(√2)/2-(4/5)(√2)/2
=(3/10)√2-(4/10)√2
=-(√2)/10,10,
所以:θ-π/4∈(π/4,3π/4)
因此:sin(θ-π/4)>0
又:cos(θ-π/4)=3/5
而:sin²(θ-π/4)+cos²(θ-π/4)=1
所以,sin²(θ-π/4)=1-cos²(θ-π/4)=1-(3/5)²=16/25
由此得:sin(θ-π/4)=4/5
cosθ=cos[(θ-π/4)+π/4]
=cos(θ-π/4)cos(π/4)-sin(θ-π/4)sin(π/4)
=(3/5)(√2)/2-(4/5)(√2)/2
=(3/10)√2-(4/10)√2
=-(√2)/10,10,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询