
设f(x)=lnx+x^1/2-1,证明:当x>1时f(x)<3/2(x-1)
1个回答
展开全部
lnx<=x-1 记t=根号x
f<3/2(x-1)
x-1+t-1<3/2(x-1)
2(t-1)<(x-1)
2t<x+1
4x<(x+1)^2
0<(x-1)^2
f<3/2(x-1)
x-1+t-1<3/2(x-1)
2(t-1)<(x-1)
2t<x+1
4x<(x+1)^2
0<(x-1)^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询