
已知sin(π/4-x)=12/13,0<x<3π/4,求cos2x/cos(π/4+x)
1个回答
展开全部
解析:
由已知得:sin(π/4-x)=sin(π/2 - π/4 -x)=cos( π/4 +x)=12/13
因为0<x<3π/4,那么: π/4 < π/4 +x<π
所以可得:sin( π/4 +x)=√[1- cos²( π/4 +x)]=5/13
那么:
cos2x/cos(π/4+x)
=sin(π/2 + 2x)/cos(π/4+x)
=2sin(π/4+x)cos(π/4+x)/cos(π/4+x)
=2sin(π/4+x)
=10/13
由已知得:sin(π/4-x)=sin(π/2 - π/4 -x)=cos( π/4 +x)=12/13
因为0<x<3π/4,那么: π/4 < π/4 +x<π
所以可得:sin( π/4 +x)=√[1- cos²( π/4 +x)]=5/13
那么:
cos2x/cos(π/4+x)
=sin(π/2 + 2x)/cos(π/4+x)
=2sin(π/4+x)cos(π/4+x)/cos(π/4+x)
=2sin(π/4+x)
=10/13
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询