矩阵向量组线性相关吗?怎么证明?
1个回答
展开全部
证明矩阵向量组线性无关,就是把这些向量组成一个矩阵,然后用初等行变换将之变成只含1和0的矩阵;然后观察每列的元素,如果某一列能够被其他列线性计算表示,则说明是线性相关,反之线性无关。
证明举例:A=【1 0 0】T和B=【0 1 0】T和C=【0 0 1】T,他们之间是没办法用A = b*B+c*C来表示的,或者找不到b和c,使得A = b*B+c*C成立,此时说明A和B C线性无关。反之,如果能找到b和c,使得A = b*B+c*C成立,那么A和B C线性无关。
线性相关性质
1、对于任一向量组而言,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关;若a≠0,则说A线性无关。
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询