在三角形ABC中,AB=AC,D点在CB的延长线上,求证:AD^2-AB^2=BD*CD 如题

 我来答
大仙1718
2022-08-15 · TA获得超过1287个赞
知道小有建树答主
回答量:171
采纳率:98%
帮助的人:63.4万
展开全部
过A点作AH⊥BC于H'则BH=HC,在直角△ABH,ADH中有AD^2=AH^2+DH^2,AB^2=AH^2+
BH^2
两式相减得:AD^2-AB^2=DH^2-BH^2=(DH+BH)(DH-BH)=(DH+HC)(DH-BH)=BD*CD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式