求积分1。∫[(sinx-cosx)/(sinx+cosx)] dx 2.∫dx/(x²-7x+12)
2个回答
展开全部
①=∫[(sinx-cosx)/(sinx+cosx)] dx
=-∫[1/(sinx+cosx)] d(cosx+sinx)
=-ln(sinx+cosx)+C
②②∫dx/(x²-7x+12)
=(1/3)∫{1/(x-5)-1/(x-2)}dx
=(1/3)∫d(x-5)/(x-5)-∫d(x-2)/(x-2)
=(1/3){ln(x-5)-ln(x-2)+C
=-∫[1/(sinx+cosx)] d(cosx+sinx)
=-ln(sinx+cosx)+C
②②∫dx/(x²-7x+12)
=(1/3)∫{1/(x-5)-1/(x-2)}dx
=(1/3)∫d(x-5)/(x-5)-∫d(x-2)/(x-2)
=(1/3){ln(x-5)-ln(x-2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题:-(-sinx+cosx)dx=-d(cosx+sinx)所以
∫[(sinx-cosx)/(sinx+cosx)] dx=-∫[1/(sinx+cosx)] d(cosx+sinx)=-ln(sinx+cosx)+c
第二题:1/(x²-7x+12)=1/{(x-2)(x-5)}=(1/3){1/(x-5)-1/(x-2)}所以
∫dx/(x²-7x+12)=(1/3)∫{1/(x-5)-1/(x-2)}dx=(1/3)∫d(x-5)/(x-5)-∫d(x-2)/(x-2)
=(1/3){ln(x-5)-ln(x-2)+c}
∫[(sinx-cosx)/(sinx+cosx)] dx=-∫[1/(sinx+cosx)] d(cosx+sinx)=-ln(sinx+cosx)+c
第二题:1/(x²-7x+12)=1/{(x-2)(x-5)}=(1/3){1/(x-5)-1/(x-2)}所以
∫dx/(x²-7x+12)=(1/3)∫{1/(x-5)-1/(x-2)}dx=(1/3)∫d(x-5)/(x-5)-∫d(x-2)/(x-2)
=(1/3){ln(x-5)-ln(x-2)+c}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询