计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域

轩轩智慧先锋
高能答主

2019-07-10 · 希望是生命中的那束光,照亮我们的未来。
轩轩智慧先锋
采纳数:2714 获赞数:533388

向TA提问 私信TA
展开全部

结果为:16π/3

解题过程如下:

解:原式=∫<0,2π>dθ∫<0,2>rdr∫<r^2/2,2>r^2dz (作柱面坐标变换)

=2π∫<0,2>r^3(2-r^2/2)dr

=2π∫<0,2>(2r^3-r^5/2)dr

=2π(2^4/2-2^6/12)

=2π(8/3)

=16π/3

扩展资料

求函数积分的方法:

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

新手啊新手啊
2012-06-24 · TA获得超过1303个赞
知道小有建树答主
回答量:201
采纳率:0%
帮助的人:381万
展开全部

这种题目的基本思路是运用Fubini定理,必要时用极坐标换元。

追问
Fubini定理是什么
追答
fubini定理即富比尼定理,参考资料是百度百科。
这个定理在微积分的书里一般都有,百科中的“σ-有限测度空间”可以换成R^3空间,就是通常的“三维空间”。A 和 B可以看成R或R^2空间。
上面的图中,第二个等号用到了这个定理。

参考资料: http://baike.baidu.com/view/1735107.htm

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式