什么是反函数?
如图所示:
扩展资料:
一函数f若要是一明确的反函数,它必须是一双射函数,即:
(单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超过一个的值上去。
(满射)陪域上的每一元素都必须被f映射到:
不然将没有办法对某些元素定义f的反函数。若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线必对所有实数k,通过且只通过一次。
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。
总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。若此时x1≥x2。
根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。
参考资料来源:百度百科-反函数
广告 您可能关注的内容 |