已知CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F分别是直线CD上的两点,且∠BEC=∠CFA=∠a.
1)若直线CD经过∠BCA的内部,且E、F在射线CD上,1、如图1,若∠BCA=90°,∠a=90°,证明:BE=CF;EF=|BE-AF|2、如图2,若0°<∠BCA<...
1)若直线CD经过∠BCA的内部,且E、F在射线CD上,
1、如图1,若∠BCA=90°,∠a=90°,证明:BE=CF; EF=|BE-AF|
2、如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件:使1中的两个结论仍然成立,并证明两个结论成立。
(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,EF、BE、AF三条线段的数量关系是什么?
快快快 展开
1、如图1,若∠BCA=90°,∠a=90°,证明:BE=CF; EF=|BE-AF|
2、如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件:使1中的两个结论仍然成立,并证明两个结论成立。
(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,EF、BE、AF三条线段的数量关系是什么?
快快快 展开
展开全部
(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF,EC=AF;又因为EF=CF-CE,所以EF=|BE-AF|;
②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.
(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.
解答:解:(1)①∵∠BCA=90°,∠α=90°,
∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC与△CDA中,
∵ ∠BEC=∠CFA ∠CBE=∠ACD CA=CB ,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
②∠α与∠BCA应满足的关系是∠α+∠BCA=180°,理由为:
∵∠α+∠BCA=180°,
∴∠α+∠BCE+∠FCA=180°,
∴∠α+∠BCE+∠CBE=180°,又三角形内角和等于180°,
∴∠CBE=∠ACD,又∠BEC=∠CFA,CA=CB,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
则∠α与∠BCA应满足的关系是∠α+∠BCA=180°;
(2)探究结论:EF=BE+AF,
证明:∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°
又∵∠BCA=∠α=∠CFA,
∴∠1=∠3;
又∵∠BEC=∠CFA=∠α,CB=CA,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∴EF=EC+CF=BE+AF.
②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.
(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.
解答:解:(1)①∵∠BCA=90°,∠α=90°,
∴∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC与△CDA中,
∵ ∠BEC=∠CFA ∠CBE=∠ACD CA=CB ,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
②∠α与∠BCA应满足的关系是∠α+∠BCA=180°,理由为:
∵∠α+∠BCA=180°,
∴∠α+∠BCE+∠FCA=180°,
∴∠α+∠BCE+∠CBE=180°,又三角形内角和等于180°,
∴∠CBE=∠ACD,又∠BEC=∠CFA,CA=CB,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∵EF=CF-CE,
∴EF=|BE-AF|;
则∠α与∠BCA应满足的关系是∠α+∠BCA=180°;
(2)探究结论:EF=BE+AF,
证明:∵∠1+∠2+∠BCA=180°,∠2+∠3+∠CFA=180°
又∵∠BCA=∠α=∠CFA,
∴∠1=∠3;
又∵∠BEC=∠CFA=∠α,CB=CA,
∴△BEC≌△CFA(AAS),
∴BE=CF,EC=FA,
∴EF=EC+CF=BE+AF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询