行列式和矩阵的区别是什么?
行列式与矩阵的区别是矩阵是一个数表,而行列式是一个n阶的方阵;矩阵不能从整体上被看成一个数,行列式最终可以算出来变成一个数。行列式与矩阵的联系是矩阵乘积的行列式等于行列式的乘积。
区别:
1、矩阵是一个数表;行列式是一个n阶的方阵。
2、矩阵不能从整体上被看成一个数;行列式最终可以算出来变成一个数。
3、矩阵的行数和列数可以不同;行列式行数和列数必须相同。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
行列式性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。