矩阵的几何意义
展开全部
矩阵的几何意义是:两个线性变换的复合。
矩阵的几何意义就是两个线性变换的复合,比如A矩阵表示旋转变换,B矩阵表示伸长变换,AB就是伸长加旋转的总变换:同时伸长和旋转。在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵概念在生产实践中也有许多应用,比如矩阵图法以及保护个人帐号的矩阵卡系统(由深圳网域提出)等等。
矩阵分解将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。
矩阵的运算顺序是从右往左,可能不太符合常规习惯。不过想一想前面提到的,矩阵运算其实就是对空间进行函数运算,再结合复合f(g(x))的写法:先计算g(x),再计算f(g(x))。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询