
不等式(x-2)^2(3-x)(x-4)^3(x-1)>=0的解集为
展开全部
首先平方项一定是大于等于0的
于是变形为(3-x)(x-4)^3(x-1)>=0
再可以变为(x-3)(x-4)(x-1)<=0
再通过穿针法得出x≤1或3≤x≥4
于是变形为(3-x)(x-4)^3(x-1)>=0
再可以变为(x-3)(x-4)(x-1)<=0
再通过穿针法得出x≤1或3≤x≥4
展开全部
(x-2)^2(3-x)(x-4)^3(x-1)>=0
(x-2)^2(x-4)^2(x-3)(x-4)(x-1)<=0
(x-2)^2(x-4)^2>=0
(x-3)(x-4)(x-1)<=0
(1)当x<=1
(x-3)<0
(x-4)<0
(x-1)<=0
(2)x>1
(x-1)>0
(x-3)(x-4)(x-1)<=0
(x-3)(x-4)<=0
3<=x<=4
所以解集为x<=1或3<=x<=4
(x-2)^2(x-4)^2(x-3)(x-4)(x-1)<=0
(x-2)^2(x-4)^2>=0
(x-3)(x-4)(x-1)<=0
(1)当x<=1
(x-3)<0
(x-4)<0
(x-1)<=0
(2)x>1
(x-1)>0
(x-3)(x-4)(x-1)<=0
(x-3)(x-4)<=0
3<=x<=4
所以解集为x<=1或3<=x<=4
追问
嗯嗯 谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询