三角函数的计算方法
三角函数的计算方法:正弦:SinA=对边A/斜边C;对边A=斜边C*SinA;对边A=邻边B*TanA。余弦:CosA=邻边B/斜边C;邻边B=斜边C*CosA;邻边B=对边A/TanA。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
记忆方法
记忆方法一:奇变偶不变,符号看象限:奇变偶不变:其中的奇偶是指π/2的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,正切变余切。符号看象限:根据角的范围以及三角函数在哪个象限的正负,来判断新三角函数的符号。
以诱导公式二为例:若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二。
2023-08-25 广告