反三角函数有哪些公式?
反三角函数基本公式如下:
一、余角关系公式
arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
二、负数关系公式
arcsin(-X)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arcsec(-x)=-arcsec(x)
三、倒数关系公式
arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)
arcsec(1/x)=arccos(x)
arccsc(1/x)=arcsin(x)
反三角函数的分类:
反正弦函数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
反余弦函数:余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。
反正切函数:正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
反余切函数:余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx。表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
反正割函数:正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
反余割函数:余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示个余割值为x的角,该角的范围在[π/2,0)U(0,π/2]区间内。