函数在间断点处一定连续吗?
1个回答
展开全部
可去间断点和跳跃间断点称为第一类间断点,其它间断点称为第二类间断点。
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个为∞,如函数y=tanx在点x=π/2处。
连续与非连续的定义
设函数y=f(x)在点x0 的某一去心邻域内有定义,如果函数f(x)当x→x0 时的极限存在,且等于它在点x0 处的函数值f(x0),即limf(x)=f(x0)(x→x0),那么就称函数f(x)在点x0 处连续。
不连续情形:
1、在点x=x0没有定义;
2、虽在x=x0有定义但lim(x→x0)f(x)不存在;
3、虽在x=x0有定义且limf(x)(x→x0)存在,但lim f(x)≠f(x0)(x→x0)时则称函数在x0处不连续或间断。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询