展开全部
∵CD=1/2AB E为AB中点
∴AE=BE=1/2AB=CD
∵AB//DC 即AE∥DC
∴四边形AECD是平行四边形 ∠ADC=180°-∠A=120°
∴AD=EC AD∥EC
∴∠A=∠CEB=60°
在Rt△BCE中
EC=BE/cos60°=2/(1/2)=4
∴AD=EC=4
∵F为AD中点
∴FD=AF=1/2AD=2
∴FD=CD=2
∴△FDC是等腰三角形
∵∠FDC=∠ADC=120°
∴∠DFC=∠DCF=30°
过D做DM⊥FC那么FM=MC=1/2FC(等腰△三线合一)
在Rt△DMF中
FM=FD×cos∠DFC=2×cos30°=2×√3/2=√3
∴FC=2FM=2√3
∴AE=BE=1/2AB=CD
∵AB//DC 即AE∥DC
∴四边形AECD是平行四边形 ∠ADC=180°-∠A=120°
∴AD=EC AD∥EC
∴∠A=∠CEB=60°
在Rt△BCE中
EC=BE/cos60°=2/(1/2)=4
∴AD=EC=4
∵F为AD中点
∴FD=AF=1/2AD=2
∴FD=CD=2
∴△FDC是等腰三角形
∵∠FDC=∠ADC=120°
∴∠DFC=∠DCF=30°
过D做DM⊥FC那么FM=MC=1/2FC(等腰△三线合一)
在Rt△DMF中
FM=FD×cos∠DFC=2×cos30°=2×√3/2=√3
∴FC=2FM=2√3
展开全部
做辅助线BD
证△BCD全等于△EBC
得BD=EC=AD
得△ABD为等腰三角形 且∠A=60° 推出△ABD为正三角形
得AD=CE=BD4 DF= AE=BE=2
CE=CE
∠CED= ∠AEF=∠FEC=60°
得△CFE全等于△CBE
得CF=BC
故CF=BC=2√3
证△BCD全等于△EBC
得BD=EC=AD
得△ABD为等腰三角形 且∠A=60° 推出△ABD为正三角形
得AD=CE=BD4 DF= AE=BE=2
CE=CE
∠CED= ∠AEF=∠FEC=60°
得△CFE全等于△CBE
得CF=BC
故CF=BC=2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:要求证明△BCE≌△CEF
∵AB=2CD,E.F分别为AB.AD中点
∴AD//CE,
∠BEC=∠A=60°
AD=CE=2BE=AB
AF=1/2 AD=AE=BE=EF=BC=2
∠CEF=60°=∠BEC
∴△BCE≌△CEF (SAS)
CF=BC
tg60°=√3=BC/BE
CF=BC=2√3
∵AB=2CD,E.F分别为AB.AD中点
∴AD//CE,
∠BEC=∠A=60°
AD=CE=2BE=AB
AF=1/2 AD=AE=BE=EF=BC=2
∠CEF=60°=∠BEC
∴△BCE≌△CEF (SAS)
CF=BC
tg60°=√3=BC/BE
CF=BC=2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接DE,
∵∠A=60°,AB⊥BC ,且梯形ABCD为直角梯形
∴ΔABE为直角三角形
∴∠ADE=30°
∴AD=2AE
又∵E.F分别为AB.AD中点
∴AE=EF=AF=CD=2
∴ΔAEF为等边三角形
∴∠A=∠AEF=∠AFE=60°
同理可得ΔBCE为直角三角形
∴∠BEC=60°,∠BCE=30°
∴CE=4
∵ABCD为直角梯形,且E.F分别为AB.AD中点
∴CE、CF必平分∠BCD
∴∠BCE=∠ECF=∠FCD=30°
∵∠AEF=∠BEC=60°
∴∠CEF=60°
综上所述,ΔCEF为直角三角形
∴CF=√CE2-EF2=√16-4=2√3
∵∠A=60°,AB⊥BC ,且梯形ABCD为直角梯形
∴ΔABE为直角三角形
∴∠ADE=30°
∴AD=2AE
又∵E.F分别为AB.AD中点
∴AE=EF=AF=CD=2
∴ΔAEF为等边三角形
∴∠A=∠AEF=∠AFE=60°
同理可得ΔBCE为直角三角形
∴∠BEC=60°,∠BCE=30°
∴CE=4
∵ABCD为直角梯形,且E.F分别为AB.AD中点
∴CE、CF必平分∠BCD
∴∠BCE=∠ECF=∠FCD=30°
∵∠AEF=∠BEC=60°
∴∠CEF=60°
综上所述,ΔCEF为直角三角形
∴CF=√CE2-EF2=√16-4=2√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询