定积分的概念和几何意义

 我来答
还记得vjshm
2023-03-21 · TA获得超过153个赞
知道小有建树答主
回答量:1389
采纳率:100%
帮助的人:18.3万
展开全部

定积分的概念和几何意义如下:

概念:是函数f(x)在区间[a,b]上的积分和的极限。

几何意义:被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。

定积分的意义有很多,它可以表示一个图形的面积,也可以和物理联系在一起,定积分可以为负值,但如果你要求图形的面积,就要用到它的绝对值旦举。

理解这个含义,需要注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有。

定积分的分类:

1、不定积分,即已知导数求原函数。若F’(x)= f(x),那么[F(x)+C]'= f(x),(C∈R,c属于常数)也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。

所以f(x)积分的结果有无数个,是不确定的。所以一律用F(x)+C代替,这就称为不定积分。即如果一个导数隐早有原函数,那么它就有无限多个原模携碧函数。

2、定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由y=0,x=a,x=b,y= f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式