旋转矩阵的性质

 我来答
梦C喵喵喵
2023-02-27 · 超过252用户采纳过TA的回答
知道小有建树答主
回答量:622
采纳率:100%
帮助的人:9.8万
展开全部

旋转矩阵的性质如下:

旋转矩阵是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。

旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。

两个向量的点积在它们都被一个旋转矩阵操作之后保持不变: 从而得出旋转矩阵的逆矩阵是它的转置矩阵: 这里的 是单位矩阵。 一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是单位一。正交矩阵的行列式是 ±1;如果行列式是 −1,则它包含了一个反射而不是真旋转矩阵。 

旋转矩阵是正交矩阵,如果它的列向量形成 的一个正交基,就是说在任何两个列向量之间的标量积是零(正交性)而每个列向量的大小是单位一(单位向量)。 任何旋转向量可以表示为斜对称矩阵 A的指数: 这里的指数是以泰勒级数定义的而 是以矩阵乘法定义的。A 矩阵叫做旋转的“生成元”。旋转矩阵的李代数是它的生成元的代数,它就是斜对称矩阵的代数。生成元可以通过 M 的矩阵对数来找到。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式