怎么证明矩阵相似
怎么证明矩阵相似方法如下:
两个矩阵相似充要条件是:特征矩阵等价行列式因子相同不变,因子相同初等因子相同,且特征矩阵的秩相同转置矩阵相似。两个矩阵若相似于同一对角矩阵,这两个矩阵相似。
两个矩阵相似充要条件是:特征矩阵等价行列式因子相同不变,因子相同初等因子相同,且特征矩阵的秩相同转置矩阵相似。两个矩阵若相似于同一对角矩阵,这两个矩阵相似。
都可以对角化就说明都与对角阵相似,且特征值相同,说明和同一对角阵相似,由相似的传递性可知,AB相似。
在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。
n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。
注:定理的证明过程实际上已经给出了把方阵对角化的方法。
若矩阵可对角化,则可按下列步骤来实现:
(1)求出全部的特征值;
(2)对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;
(3)上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。
将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。
U是m×m阶酉矩阵;Σ是m×n阶实数对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。
2021-01-25 广告