5个优化代码的小技巧专业学生来看

 我来答
赤发科普屋
2023-06-14 · TA获得超过769个赞
知道小有建树答主
回答量:4683
采纳率:86%
帮助的人:156万
展开全部

5个优化Python 代码的小技巧

让你代码更上一层楼

5个优化Python代码的小技巧

1.性能优化的分析

分析是测量和分析代码的性能以识别性能瓶颈的过程。Python

提供了内置的模块, 如c Profile和time it, 可以用来进行分析。

可以使用c Profile来分析代码中不同函数或方法所花费的时间,

使用time it来测量特定代码片段的执行时间。这里有一个示例:

在此示例中, 对两个函数slow_function和fast_function进

行分析,以测量它们的执行时间。分析结果可以帮助确定哪个函

数的执行时间更长,可以进一步优化。

2.优化数据结构

选择正确的数据结构可以显著影响Python代码的性能。

Python提供了多种内置的数据结构, 如列表、元组、集合和字

典,每一种结构都有自己的特点和性能。为一个特定的用例选择

最合适的数据结构可以极大地优化代码执行。这里有一个示例:

在此示例中,比较了两种方法来创建一个从0到9999的数字列表

。第一种方法是在一个循环中使用列表连接,由于每次迭代都要

创建新的列表,所以会导致性能不佳。第二种方法使用列表理解

,这种方法更有效,更优化。

3.利用内置的函数和库

Python提供了一套丰富的内置函数和库, 这些函数和库都是经

过性能优化的。使用这些内置函数和库可以大大提升Python代

码的性能。这里有一个示例:

在此示例中,比较了两种对一个数字列表进行排序的方法。第一

种方法使用一个自定义的比较函数, 由于lambda函数的使用,

它的速度会比较慢。第二种方法将其删除, 使用带有默认key参

数的sorted函数, 这种方法经过优化, 效率更高。

4.利用即时编译(JIT)

编译器Just-In-Time(JIT) 编译是一种可以在运行时动态优化

和编译部分代码以提高其性能的技术。Python提供了JIT编译库

, 如PyPy和Numba, 可以用来优化性能关键的代码。看下面

的示例:

在此示例中, 使用numba库对一个计算斐波那契数列的递归函

数进行了JIT编译。JIT编译在运行时优化了该函数, 与非优化版

本相比,性能得到了提高。

5.管理内存以实现性能优化

有效的内存管理可以极大地影响Python代码的性能。诸如内存

分析、垃圾收集和具有内存高效的数据结构等技术可以用来优化

内存的使用并减少占用。这里有一个示例:

在此示例中, 比较了两种使用NumPy对两个大数组进行乘法的

方法。第一种方法是使用常规的数组乘法,它创建了中间数组,

可能会导致低效的内存使用。第二种方法使用视图和广播来优化

内存使用并减少占用。

柚鸥ASO
2024-03-16 广告
首先,需要明确一点,aso(应用商店优化)的关键字并不是一个具体的指标,而是你在应用商店中为你的应用选择的关键词。这些关键词可以帮助潜在用户在应用商店中搜索你的应用。在大多数应用商店中,你可以在“关键词优化”或类似的选项中找到已设置的关键词... 点击进入详情页
本回答由柚鸥ASO提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式