幂函数与指数函数谁上升的快?
指数函数和幂函数上升速度要分两种情况;指数函数:a^x;幂函数:x^a
当a>1,从负无穷开始,幂函数大于指数函数,然后指数函数大于幂函数,在然后幂函数再次大于指数函数,最后指数函数大于幂函数,幂函数再也追不上指数函数。
当0<a<1,与a>1情况完全相反。在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数 。
扩展资料:
幂函数的性质:
1、正值性质:当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);
2、负值性质:当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质:当α=0时,幂函数y=xa有下列性质:y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。