伴随矩阵怎么求
伴随矩阵怎么求介绍如下:
伴随矩阵公式:AA*=A*A=|A|E。
伴随矩阵求公式方法:
当A的秩为n时,A可逆A*也可逆,故A*的秩为n;当A的秩为n-1时,根据秩的定义可知,A存在不为0的n-1阶余子式,故A*不等于0,又根据上述公式AA*=0而A的秩小于n-1可知A的任意n-1阶余子式都是0,A*的所有元素都是0,是0矩阵,秩也就是0。
求a的伴随矩阵的公式为A^-1=(A*)/|A|,在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念,如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。
伴随阵,又称伴随矩阵(adjoint matrix)
设R是一个交换环,A是一个以R中元素为系数的n×n的矩阵。A的伴随矩阵可按如下步骤定义:
1:A关于第i行第j列的余子式(记作Mij)是去掉A的第i行第j列之后得到的(n1)×(n1)矩阵的行列式。
2:A关于第i行第j列的代数余子式是:Aij。定义:A的余子矩阵是一个n×n的矩阵C,使得其第i行第j列的元素是A关于第i行第j列的代数余子式。
引入以上的概念后,可以定义:矩阵A的伴随矩阵是A的代数余子矩阵的转置矩阵。设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E,则称方阵A可逆,并称方阵B是A的逆矩阵
知识拓展:
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。