将函数f(x)=ln√(x+2)展开成x的幂级数,并写出它的收敛区间
2个回答
展开全部
f(x) = ln√(x+2) = 1/2 * ln(x+2)
令 g(x) = ln(x+2), g(0) = ln 2;
[ln(x+2)] ' = 1 / (x+2), g'(0) = 1/2;
[ln(x+2)] '' = -1 / (x+2)^2, g''(0) = -1 / 2^2;
[ln(x+2)] ''' = 2 / (x+2)^3, g''(0) = 2! / 2^3;
一般有:[ln(x+2)] ^(k) = (-1)^(k-1) * (k-1)! / (x+2)^k, g^(k)(0) = (-1)^(k-1) * (k-1)! / 2^k;
根据泰勒展开式有:
∴ ln(x+2) = ln 2 + x/2 - x^2 / (2^2 * 2) + x^3 / (3 * 2^3) + ... ... + (-1)^(n-1) * x^n / (n * 2^n) + ......
f(x) = ln√(x+2) = 1/2 * ln(x+2) =
ln 2 / 2 + x / 2^2 - x^2 / (2 * 2^3) + x^3 / (3 * 2^4) + ... ... + (-1)^(n-1) * x^n / (n * 2^(n+1)) + ......
收敛区间(-2, 2]. (注意:定义域要求 x + 2 > 0,x > -2)
令 g(x) = ln(x+2), g(0) = ln 2;
[ln(x+2)] ' = 1 / (x+2), g'(0) = 1/2;
[ln(x+2)] '' = -1 / (x+2)^2, g''(0) = -1 / 2^2;
[ln(x+2)] ''' = 2 / (x+2)^3, g''(0) = 2! / 2^3;
一般有:[ln(x+2)] ^(k) = (-1)^(k-1) * (k-1)! / (x+2)^k, g^(k)(0) = (-1)^(k-1) * (k-1)! / 2^k;
根据泰勒展开式有:
∴ ln(x+2) = ln 2 + x/2 - x^2 / (2^2 * 2) + x^3 / (3 * 2^3) + ... ... + (-1)^(n-1) * x^n / (n * 2^n) + ......
f(x) = ln√(x+2) = 1/2 * ln(x+2) =
ln 2 / 2 + x / 2^2 - x^2 / (2 * 2^3) + x^3 / (3 * 2^4) + ... ... + (-1)^(n-1) * x^n / (n * 2^(n+1)) + ......
收敛区间(-2, 2]. (注意:定义域要求 x + 2 > 0,x > -2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询