在数列{an}中,已知a1=1.a2=1/2, 2/an=1/a(n-1) + 1/a(n+1)
求a3,a4,,,,求数列an的通项公式,,若数列{ana(n+1)}的前n项和为Sn。求证:1/2≤Sn<1,,,,,...
求a3,a4,,,,求数列an的通项公式,, 若数列{ana(n+1)}的前n项和为Sn。求证:1/2≤Sn<1 ,,,,,
展开
1个回答
展开全部
解,
1)求an
设 bn = 1/an
则 2bn = b(n-1) + b(n+1), 即 bn 为等差数列。
b1 = 1/a1 = 1, b2 = 1/a2 = 2
显然 bn = n, an = 1/n
a3,a4就不写了吧
2)新数列 ana(n+1)
设此数列为cn = ana(n+1) = 1/n(n+1) = 1/n - 1/(n+1)
则 c1 = 1/2
c2 = 1/2 *1/3 = 1/2
sn = 1/2 + (1/2- 1/3) + (1/3-1/4) + ...+ (1/n - 1/(n+1))
当n =1时,sn = 1/2
当n>1时,sn = 1 - 1/(n+1)
所以 1/2≤Sn<1
1)求an
设 bn = 1/an
则 2bn = b(n-1) + b(n+1), 即 bn 为等差数列。
b1 = 1/a1 = 1, b2 = 1/a2 = 2
显然 bn = n, an = 1/n
a3,a4就不写了吧
2)新数列 ana(n+1)
设此数列为cn = ana(n+1) = 1/n(n+1) = 1/n - 1/(n+1)
则 c1 = 1/2
c2 = 1/2 *1/3 = 1/2
sn = 1/2 + (1/2- 1/3) + (1/3-1/4) + ...+ (1/n - 1/(n+1))
当n =1时,sn = 1/2
当n>1时,sn = 1 - 1/(n+1)
所以 1/2≤Sn<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询