一道高数题:求不定积分∫(x^2+x^4)^1/2dx.
2个回答
2012-06-29
展开全部
∫ (x^2+x^4)^1/2 dx
= ∫[x^2(x^2+x^4)]^1/2dx
= ∫x[(1+x^2)]^1/2dx 设x=tant,则dx=(sect)^2dt ∫(x^2+x^4)^1/2dx
= ∫[x^2(x^2+x^4)]^1/2dx
= ∫x[(1+x^2)]^1/2dx
= ∫tant{[1+(tant)^2]}^1/2* (sect)^2dt
= ∫tantsect* (sect)^2dt
= ∫(sect)^2d(secttant)
= (1/3)(sect)^3+C
由tant=x得到,sect=(x^2+1)^(1/2)
∫(x^2+x^4)^1/2dx =(1/3)(x^2+1)^(3/2)+C
= ∫[x^2(x^2+x^4)]^1/2dx
= ∫x[(1+x^2)]^1/2dx 设x=tant,则dx=(sect)^2dt ∫(x^2+x^4)^1/2dx
= ∫[x^2(x^2+x^4)]^1/2dx
= ∫x[(1+x^2)]^1/2dx
= ∫tant{[1+(tant)^2]}^1/2* (sect)^2dt
= ∫tantsect* (sect)^2dt
= ∫(sect)^2d(secttant)
= (1/3)(sect)^3+C
由tant=x得到,sect=(x^2+1)^(1/2)
∫(x^2+x^4)^1/2dx =(1/3)(x^2+1)^(3/2)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询