设X.Y是实数,且满足X^2+XY+Y^2=3,求u=X^2-XY+Y^2的最大值与最小值
3个回答
展开全部
x^2+xy+y^2=2
(x-y)^2+3xy=2
(x-y)^2=2-3xy≥0
xy≤2/3
x^2+xy+y^2=2
(x+y)^2-xy=2
(x-y)^2=2+xy≥0
xy≥-2
所以 -2≤xy≤2/3
x^2-xy+y^2=u
x^2+xy+y^2=2
等式两边相减
-2xy=u-2
因为 -2≤xy≤2/3
所以 4≥u-2≥-4/3
即 2/3≤u≤6
(x-y)^2+3xy=2
(x-y)^2=2-3xy≥0
xy≤2/3
x^2+xy+y^2=2
(x+y)^2-xy=2
(x-y)^2=2+xy≥0
xy≥-2
所以 -2≤xy≤2/3
x^2-xy+y^2=u
x^2+xy+y^2=2
等式两边相减
-2xy=u-2
因为 -2≤xy≤2/3
所以 4≥u-2≥-4/3
即 2/3≤u≤6
参考资料: http://zhidao.baidu.com/question/285839065.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询