已知函数f(x)=1/3的ax2-4x+3次方。(1)若a= -1求单调区间。(2)若f(x)有最大值3,求a(3)。
1个回答
展开全部
1、
f(x)=(1/3)^(-x²-4x+3)
∵函数y=-x²-4x+3对称轴为x=-2,开口向下
∴函数y=-x²-4x+3在(-∞,-2)单调递增,在[-2,+∞)上单调递减
又∵函数y=(1/3)^x在R上单调递减
∴根据复合函数单调性,得:
f(x)在(-∞,-2)单调递减,在[-2,+∞)上单调递增
注:复合函数单调性:增减复合得减,增增复合得增,减减复合得增
2、
∵f(x)有最大值3
∴根据上面的复合函数单调性有:函数y=ax²-4x+3有最小值 - 1
∴顶点纵坐标为(12a - 16)/(4a) = -1
∴a=1
3、
∵f(x)值域是(0,+∞)
∴函数y=ax²-4x+3必须取到所有实数,即:值域为R
∴只有a=0时,才能满足
∴a=0
f(x)=(1/3)^(-x²-4x+3)
∵函数y=-x²-4x+3对称轴为x=-2,开口向下
∴函数y=-x²-4x+3在(-∞,-2)单调递增,在[-2,+∞)上单调递减
又∵函数y=(1/3)^x在R上单调递减
∴根据复合函数单调性,得:
f(x)在(-∞,-2)单调递减,在[-2,+∞)上单调递增
注:复合函数单调性:增减复合得减,增增复合得增,减减复合得增
2、
∵f(x)有最大值3
∴根据上面的复合函数单调性有:函数y=ax²-4x+3有最小值 - 1
∴顶点纵坐标为(12a - 16)/(4a) = -1
∴a=1
3、
∵f(x)值域是(0,+∞)
∴函数y=ax²-4x+3必须取到所有实数,即:值域为R
∴只有a=0时,才能满足
∴a=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询