arctanx+C的导数是1/(1+x^2)。C为常数。
解答过程如下:
f(x)=arctanx+C,令y=arctanx;则x=tany
因为
f'(x)=(arctanx)'+0
=1/(tany)'
=1/(siny/cosy)'
=1/[(cos^2y+sin^2y)/cos^2y]
=1/(1+tan^2y)
=1/(1+x^2)
扩展资料:
商的导数公式:
(u/v)'=[u*v^(-1)]'
=u' * [v^(-1)] +[v^(-1)]' * u
= u' * [v^(-1)] + (-1)v^(-2)*v' * u
=u'/v - u*v'/(v^2)
通分,易得
(u/v)=(u'v-uv')/v²
常用导数公式:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
令y=arctanx;则x=tany
因为
f'(x)=(arctanx)'+0
=1/(tany)'
=1/(siny/cosy)'
=1/[(cos^2y+sin^2y)/cos^2y]
=1/(1+tan^2y)
=1/(1+x^2)
有不懂欢迎追问