tan105° =tan(45°+60°)
=(tan45°+tan60°)/(1-tan45°tan60°)
=(1+√3)/(1-√3) = -2-√3
Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。
扩展资料:
tan计算公式
tan a=sin a/cos a
tanα=1/cotα
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
tan105°=tan(45°+60°)=(tan45°+tan60°)/(1-tan45°tan60°)=(1+√3)/(1-√3)=-2-√3
Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。
相关换算如下:
tanA=∠A的对边/∠A的邻边
30° sina=1/2 cosa=√3/2 tana=√3/3
90° sinα=1 cosα=0 tanα不存在
120° sinα=√3/2 cosα=-1/2 tanα=-√3
150° sinα=1/2 cosα=-√3/2 tanα=-√3/3
180° sinα=0 cosα=-1 tanα=0
270° sinα=-1 cosα=0 tanα不存在
360° sinα=0 cosα=1 tanα=0
扩展资料:
一、常用公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
公式三:
任意角α与 -α的三角函数值之间的关系: tan(-α)=-tanα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα(以上k∈Z)
二、诱导公式
tan(2kπ+α)=tan α
tan(π/2-α)=cot α
tan(π/2+α)=-cot α
tan(π+α)=tan α
tan(π-α)=-tan α
参考资料:
=tan(45°+60°)
=(tan45°+tan60°)/(1-tan45°tan60°)
=(1+√3)/(1-√3)
=-2-√3