已知原函数的导数为:根号下的多项式,求原函数有哪些方法?如求y=根号(4-x的平方)的原函数.(要过程)
1个回答
展开全部
一般用三角函数代换,已知y=√(x^2±a^2),
若x在前,后面是减号,则设x=asect,若后面是加号,则设x=atant,
已知y=√(a^2-x^2),则设x=asint,
本例中,∫√(4-x^2)dx,a=2,
则设x=2sint,dx=2costdt,
√(4-x^2)=2cost,
cost=(1/2)√(4-x^2),
t=arcsinx/2,
sin2t=2sintcost=(x/2)√(4-x^2)
原式=∫2cost*2costdt
=4*(1/2)∫(1+cos2t)dt
=2∫dt+∫cos2t d(2t)
=2t+sin2t+C
=2arcsin(x/2)+(x/2)√(4-x^2)+C.
若x在前,后面是减号,则设x=asect,若后面是加号,则设x=atant,
已知y=√(a^2-x^2),则设x=asint,
本例中,∫√(4-x^2)dx,a=2,
则设x=2sint,dx=2costdt,
√(4-x^2)=2cost,
cost=(1/2)√(4-x^2),
t=arcsinx/2,
sin2t=2sintcost=(x/2)√(4-x^2)
原式=∫2cost*2costdt
=4*(1/2)∫(1+cos2t)dt
=2∫dt+∫cos2t d(2t)
=2t+sin2t+C
=2arcsin(x/2)+(x/2)√(4-x^2)+C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询