f(x)=arcsinx,求f(0)的n阶导数.

mscheng19
推荐于2018-03-29 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2262万
展开全部
如果学过幂级数,就用幂级数的知识解决。下面给个不用幂级数的方法。
y'=1/根号(1-x^2),因此
(y')^2*(1-x^2)=1,求导得
2y'y''(1-x^2)+(y')^2(-2x)=0,由于y'不等于0,故有
y''(1-x^2)-xy'=0。求n次导数,利用Leibniz定理得
y^(n+2)+n*y^(n+1)(-2x)+n*(n-1)/2*y^(n)(-2)-xy^(n+1)-ny^(n)=0。
令x=0得y^(n+2)(0)=n^2*y^(n)(0)。
然后利用上面的递推关系式以及y(0)=0,y'(0)=1,可以得到
y^(2n)(0)=0,y^(2n+1)=(2n-1)(2n-3)...1=(2n-1)!!。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式