高中解析几何——问题

1.将椭圆x平方/2+Y平方=1绕坐标原点逆时针旋转45°,后所得椭圆的最高点与原点的距离为()2.已知椭圆C:x平方/a平方+y平方/b平方=1,(a>b>0)F1,F... 1.将椭圆x平方/2+Y平方=1绕坐标原点逆时针旋转45°,后所得椭圆的最高点与原点的距离为()

2.已知椭圆C:x平方/a平方 +y平方/b平方=1,(a>b>0)F1,F2左右焦点,Q为任意一点,三角形F1QF2重心G,内心I直线IG与X轴平行,C的离心率

怎么求?????
展开
韩增民松
2012-07-03 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2741万
展开全部
1.将椭圆x平方/2+Y平方=1绕坐标原点逆时针旋转45°,后所得椭圆的最高点与原点的距离为()
分析:解此题关键是确定椭圆旋转后的最高点,如何确定呢?试想,当椭圆逆时针旋转45°后。过其最高点作椭圆的切线,切线斜率一定为零,即平行X轴,所以该点在未旋转时的对应点切线斜率一定为-1
解析:∵椭圆x^2/2+y^2=1
设椭圆的一切线为y=-x+b==>y^2=x^2+b^2-2bx
带入椭圆得3x^2-4bx+2(b^2-1)=0
令⊿=16b^2-24(b^2-1)=0 ==>b^2=3==>b=±√3
∴将b=√3代入方程得3x^2-4√3x+4=0解得 x=2√3/3,y=√3/3
即最高点在未旋转时的对应点为(2√3/3,√3/3)
该点到原点距离为d=√15/3椭圆逆时针旋转45°后,到原点距离不变
∴旋转后椭圆的最高点与原点的距离为√15/3

2.已知椭圆C:x平方/a平方 +y平方/b平方=1,(a>b>0)F1,F2左右焦点,Q为任意一点,三角形F1QF2重心G,内心I,直线IG与X轴平行,C的离心率
解析:∵椭圆C:x^2/a^2 +y^2/b^2=1,(a>b>0)
设Q(x0,y0)
∵G为△F1PF2的重心==>G点坐标为 G(x0/3,y0/3)
∵IG∥x轴,
∴I的纵坐标为y0/3,
∵在△F1QF2中,|QF1|+|QF2|=2a,|F1F2|=2c
∴S△F1QF2=1/2•|F1F2|•|y0|
又∵I为△F1QF2的内心,∴I的纵坐标y0/3,即为内切圆半径,
内心I把△F1QF2 分为三个底分别为△F1QF2的三边,高为内切圆半径的小三角形
∴S△F1QF2=1/2*(|QF1|+|F1F2|+|QF2|)*|y0/3|
∴1/2*|F1F2|*|y0|=1/2(|QF1|+|F1F2|+|QF2|)|y0/3|
即1/2*2c*|y0|=1/2(2a+2c)|y0/3|==>2c=(2a+2c)/3
∴2c=a,
∴椭圆C的离心率e=c/a=1/2
如沫470
2012-07-03 · 超过19用户采纳过TA的回答
知道答主
回答量:58
采纳率:0%
帮助的人:43.2万
展开全部
第一个问题:把X轴顺时针旋转四十五度得到Y=-X在该直线上方的椭圆上找到到该直线最远的点(可以设点为(根号2*COSA,SINA)用公式和三角函数解)。再把求出的点逆时针转45°,再求到原点距离(不用转也行)。第二题没看明白
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式