这个推理题答案是什么啊?

某老师有2个绝顶聪明的学生。某日,老师找到两人做一个游戏:老师从2—99中取出两个整数,把两数的和告诉甲,把两数的积告诉乙。问他们知不知道这两个是什么数?甲说:我不知道,... 某老师有2个绝顶聪明的学生。某日,老师找到两人做一个游戏:老师从2—99中取出两个整数,把两数的和告诉甲,把两数的积告诉乙。问他们知不知道这两个是什么数?
甲说:我不知道,但我保证乙也不知道。
乙说:我本来不知道的,现在我知道了。
甲说,那我也知道了。
请问,老师取出的是哪两个整数?
展开
 我来答
gigagiga2008
2012-07-03 · TA获得超过2.9万个赞
知道大有可为答主
回答量:3015
采纳率:80%
帮助的人:663万
展开全部
4和13

解题思路1:

假设数为
X,Y;和为X+Y=A,积为X*Y=B.
根据甲第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...

......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。

这时候,乙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。

和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,...
和是29能得到的积:54,78...

......
因为甲说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。 那么X和Y分别是4和13。

解题思路2:

说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。

1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。

2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。

3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。

4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。

5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。

6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。

7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。

8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
贺兰山赏雪
2012-07-03 · TA获得超过298个赞
知道小有建树答主
回答量:316
采纳率:0%
帮助的人:141万
展开全部
看的我一头雾水...表述一点也不清楚
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式