
已知函数f(x)=sin^2x+2sinx*cosx+3cos^2,x属于R,求函数f(x)的最值
3个回答
展开全部
f(x)=sin^2x+2sinx*cosx+3cos^2
=1+sin2x+2cos^2
=1+sin2x+cos2x+1
=2+√2sin(2x+π/4)
当2x+π/4=2kπ+π/2,即x=kπ+π/8时,(k∈Z) f(x)max=2+√2
当2x+π/4=2kπ-π/2,即x=kπ-3π/8时,(k∈Z) f(x)min=2-√2
友情提醒,求最值,必须写条件,否则会莫名其妙地失分!!!
【【不清楚,再问;满意, 请采纳!祝你好运开☆!!】】
=1+sin2x+2cos^2
=1+sin2x+cos2x+1
=2+√2sin(2x+π/4)
当2x+π/4=2kπ+π/2,即x=kπ+π/8时,(k∈Z) f(x)max=2+√2
当2x+π/4=2kπ-π/2,即x=kπ-3π/8时,(k∈Z) f(x)min=2-√2
友情提醒,求最值,必须写条件,否则会莫名其妙地失分!!!
【【不清楚,再问;满意, 请采纳!祝你好运开☆!!】】
展开全部
f(x)=sin^2x+2sinx*cosx+3cos^2x
=(sinx)^2+2sinx*cosx+(cosx)^2+2*(cosx)^2
=1+sin2x+cos2x+1
=2+sin2x+cos2x
=2+√2sin(2x+1/4*π)
因为x属于R
所以√2sin(2x+1/4*π)取值[-√2,√2]
所以f(x)取值[-√2+2,√2+2]
=(sinx)^2+2sinx*cosx+(cosx)^2+2*(cosx)^2
=1+sin2x+cos2x+1
=2+sin2x+cos2x
=2+√2sin(2x+1/4*π)
因为x属于R
所以√2sin(2x+1/4*π)取值[-√2,√2]
所以f(x)取值[-√2+2,√2+2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=sin^2x+2sinx*cosx+3cos^2
=sin^2x+2sinx*cosx+cos^2+2cos^2
=1+sin2x+2cos^2
=1+sin2x+cos2x+1
=2+根2sin(2x+π/4)
f(x)max=2+根2
f(x)min=2-根2
=sin^2x+2sinx*cosx+cos^2+2cos^2
=1+sin2x+2cos^2
=1+sin2x+cos2x+1
=2+根2sin(2x+π/4)
f(x)max=2+根2
f(x)min=2-根2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询