一道概率论的题!!!在线等!!
展开全部
E(Y)=E(3X+1)=3E(X)+1; D(Y)=D(3X+1)=9D(X)=27; E(XY)=E(3X^2+X)=3E(X^2)+E(X) =3{D(X)+[E(X)]^2}+E(X) =3D(X)+3[E(X)]^2+E(X) =9+3[E(X)]^2+E(X) C(X,Y)=E(XY)-E(X)E(Y) =9+3[E(X)]^2+E(X)-E(X)[3E(X)+1] =9+3[E(X)]^2+E(X)-3[E(X)]^2-E(X) =9; 所以: ρ(X,Y)=C(X,Y)/{[√D(X)][√D(Y)]} =9/[(√3)(√27)] =1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询