
计算:[(1+1/4)(3^4+1/4)(5^4+1/4)…(99^4+1/4)]/[(2^4+1/4)(4^4+1/4)(6^4+1/4)…(100^4+1/4)]
展开全部
分子分母同乘以2^50,则
[(4+1)(4×3^4+1)(4×5^4+1)……(4×99^4+1)]/[(4×2^4+1)(4×4^4+1)(4×6^4+1)……(4×100^4+1)]
因为4×n^4+1=(2n²-2n+1)(2n²+2n+1)=[2n(n-1)+1][2n(n+1)+1]
所以4+1=2×1×2+1
4×3^4+1=[2×3×2+1][2×3×4+1]
4×5^4+1=[2×5×4+1][2×5×6+1]
……
分母4×2^4+1=[2×2×1+1][2×2×3+1]
4×4^4+1=[2×4×3+1][2×4×5+1]
4×6^4+1=[2×6×5+1][2×6×7+1]
……
分子分母可以消去中间项,最终剩下
1/[2×100×101+1]=1/20201
[(4+1)(4×3^4+1)(4×5^4+1)……(4×99^4+1)]/[(4×2^4+1)(4×4^4+1)(4×6^4+1)……(4×100^4+1)]
因为4×n^4+1=(2n²-2n+1)(2n²+2n+1)=[2n(n-1)+1][2n(n+1)+1]
所以4+1=2×1×2+1
4×3^4+1=[2×3×2+1][2×3×4+1]
4×5^4+1=[2×5×4+1][2×5×6+1]
……
分母4×2^4+1=[2×2×1+1][2×2×3+1]
4×4^4+1=[2×4×3+1][2×4×5+1]
4×6^4+1=[2×6×5+1][2×6×7+1]
……
分子分母可以消去中间项,最终剩下
1/[2×100×101+1]=1/20201
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询