已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3 设cn=1/bnbn+1,数列{cn}前n
展开全部
Sn=2an-1,
Sn-1=2(an-1)-1
两式相减,
an=2(an-1)
a1=2a1-1,b1=a1=1
an=2^(n-1),b4=S3=7
因为bn等差,所以bn=2n-1
Cn=1/(bnbn+1)=1/(2n-1)*1/(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
Tn=1/2[1/1-1/3+1/3-…+1/(2n-1)-1/(2n+1)]=1/2[1-1/(2n+1)]=n/(2n+1)>1001/2012
n的最小值为101
Sn-1=2(an-1)-1
两式相减,
an=2(an-1)
a1=2a1-1,b1=a1=1
an=2^(n-1),b4=S3=7
因为bn等差,所以bn=2n-1
Cn=1/(bnbn+1)=1/(2n-1)*1/(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
Tn=1/2[1/1-1/3+1/3-…+1/(2n-1)-1/(2n+1)]=1/2[1-1/(2n+1)]=n/(2n+1)>1001/2012
n的最小值为101
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询